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The analogy between nero-linear electromagnetic waves in magnetizable media and non-linear elastic waves in anisotropic media 
is justified and used. The analogy occurs when dispersion and dissipation are ignored. By using existing results [ 1] one can therefore 
immediately formulate all that relates to investigating relations in Riemann waves and electromagnetic shock waves. To describe 
the structure of electro:magnetic shock waves in magnetic materials the Laundau-Lifshits equation is employed, which differs 
considerably from the relations used to describe the structure of shock waves in elastic media. A consequence of this is that the 
set of permissible shock waves (i.e. p o s s ~  a strueaa~) acquires a complex structure and differs considerably from the analogous 
set for elastic shock waves. It is shown below, in particular, that the set of permissible electromagnetic shock waves is not the 
same as the set of initially evolution discontinuities. The requirement that a structure should exist distinguishes, on certain parts 
of the shock adiabat, a set which is a dashed line with a very short dash length. In addition, there is a large number of individual 
points on the shock adiabat of the electromagnetic shock waves. Each point corresponds to a discontinuity with a separate velocity 
of motion, recalling the slow-combustion front in gas dynamics. {~ 1997 Elsevier Science Ltd. All fights reserved. 

1. E L E C T R O M A G N E T I C  S H O C K  W A V E S  IN  M A G N E T I Z A B L E  M E D I A .  
T H E  A N A L O G Y  W I T H  E L A S T I C  W A V E S  

Elec t romagnet ic  shock waves in media  have been  investigated in detail  (see, for  example, [2-4]) in the 
case o f  plane-polar ized waves, when the magnet ic  field ahead  o f  and behind  the discontinuity and the 
vec tor  normal  to the surface of  the discontinuity lie in one  plane. In  the case o f  non-electrically con-  
ducting unpolarizable media  the equat ions  describing cont inuous one-dimensional  waves and the 
relat ions on  the discontinuities can be writ ten in the fo rm 

~e~ ~na=0, ~ = 0 ,  ~B3 
3t ~x ~ = 0 

W [ e a l + [ H a ] =  0, [ B 3 ] = 0  (1.1) 

W[Ba] + [e,] = 0, [E3] = 0 

The  subscript a takes values o f  1 or  2 and el = E2, £2 = -El ;  El, Hi, Bi (i = 1, 2, 3) are the componen t s  
o f  the  electric and magnet ic  field and magnet ic  induct ion vectors in a Cartesian system of  coordinates.  
For  simplicity, we will assume that the electric induct ion does no t  differ f rom the electric field. The  
case when  the permittivity o f  the med ium is a scalar and constant  can easily be reduced to the case 
considered.  Thex3 axis is chosen to be normal  to the wave front. In  (1.1) and hencefor th  we will omit  
the subscript  on  x3, i.e. x 3 -  x. The  variables x and t are chosen so that  the velocity of  light is equal  to 
unity. The  square brackets  denote  a j u m p  in the value at the discontinuity [Ba] = B+~ - /~a ,  where  the 
minus sign corresponds  to the state ahead  the discontinuity while the plus sign corresponds to the state 
behind  the discontinuity; Wis  the velocity of  mot ion  of  the discontinuity, W < 1. For  convenience (and 
to simplify a compar ison  with elastic waves) we will choose  the units of  measuremen t  so that  the 
numerical  values e,f the quantities El, Hi and B i are ~/(4r 0 times greater  than in the Gaussian system of  
units. The  energy per  unit  volume of  the medium (the med ium is s tat ionary and in a state o f  
the rmodynamic  equilibrium) and also the expressions for  H a  can then be writ ten in the form 
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U(Ea,Btx,s)=I (¢~ +E22)+O(Btx)+ T(s-so), or=l,2 (1.2) 

H a = O0/OB~ (1.3) 

The form of the dependence of U on the entropy s per unit volume of the medium, assumed in 
(1.2), is due to the fact that, for simplicity, below we will consider processes with fairly small entropy 
changes. In particular, we will consider electromagnetic shock waves of moderate amplitude. The fact 
that the change in s is non-negative will be used later as one of the rules for choosing permissible 
discontinuities. 

Equations (1.1)--(1.3) are identical, apart from the notation, with the similar relations for an incompres- 
sible homogeneous elastic medium [1, 5]. For complete coincidence it is sufficient to replace ea by va 
(the velocity of the medium, v3 = 0), Ba by ua (ua = 0wdar is a measure of the deformation of the 
medium, ;ca are the components of the displacement vector and u3 = 0), and Ha by t~adP0 (P0 is the 
density of the medium and t~3a are the components of the stress tensor). In the ease of elastic waves U 
and s must be understood as the energy and entropy per unit mass of the medium. 

In many cases the energy of the magnetic field in the medium is specified in a form suitable both for 
thermodynamically equilibrium states and for non-equilibrium states. It is assumed that this energy is 
a function of two arguments 

O,,,=O,,(Bi,Mk), M i = B i - H  i, i ,k=1,2,3 (1.4) 

The components of the magnetization vector Mi were defined above so that their numerical values 
are ,/(4r 0 times smaller than in the Gaussian system of units. The energy of the magnetic field in 
equilibrium states (in particular, ahead of and behind the discontinuity) has the form 

ep(Bi)=minaPm(Bi,Mk), i,k = 1,2,3 (1.5) 
Mk 

while Mk for specified values Bi can be found from the equations 

OeP,,/OMk = 0 (1.6) 

When the magnetic field exceeds the saturation threshold and at sufficiently low temperatures, we 
can assume that the magnetization vector is constant in modulus I M I = M = const [6-8]. Henceforth 
Ma will be assumed to be independent quantities, while M 3 = ~/(M 2 - M 2 - M2). If the energy of the 
magnetic field is mainly determined by the mutual orientation of the vectors B and M and depends 
only slightly on the interaction between the vector M and the medium (this is a typical cases [6, 7]), 
then, taking the equalities B3 = const and M = const into account, the expression for the internal energy 
can be written, apart from a constant, in the form [6, 7] 

= l Sl + - 83 /M2 - M ?  - + (1.7) 

The form of the function 9(Ma) is determined by the properties of the material. Here g is a small 
parameter representing the interaction between the medium and the magnetization vector. We will 
henceforth neglect terms of the order o fg  2. The two middle terms on the right-hand side of (1.7) are 
a scalar product, and for comparison with the standard form of this term we note that M.  B = M-  1t 
+ const, since B = ti  + M, M 2 = const. In expression (1.7) we have omitted terms which express the 
dependence of the energy on the spatial derivatives of the vectors characterizing the magnetic field. 
We will neglect these terms, since we propose below to consider solutions which depend slowly on the 
coordinates (the characteristic linear dimension of the solution must be much greater than the typical 
thickness of a domain wall I. --~ 10 -6 cm). Taking the first equation of (1.5) into account, it follows from 
(1.7) and (1.5) that 

(1.8) 

i.e. Eqs (1.3) are satisfied. 
Using the fact that g is small and Eq. (1.5), we obtain from (1.7) 
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.eBb) = ½¢8,  + Be)- M4B  +8, (1.9) 

Here 9" is the value of 9(Ma) provided that the vectors M and B are parallel (term s of the order ofg  2 
and above are ignored). 

For small values of B~ the function O, given by (1.9), can be expanded in series in powers of Ba 

(1.10) 

In the last term, which originates from gt#*, in view of the fact that g is small we have retained only 
terms that are quadratic in B~ (linear terms have no effect on the behaviour of the discontinuities and 
are omitted), the term BtB 2 is cancelled by the rotation of the system of coordinates, while the term 
containing B 2 + B 2 is dropped as it is small compared with the first term in (1.10). 

Materials exist (for example, a ferromagnetic cubic crystal), for which 9"(B¢) has a quadratic form 
in terms of B 1 and B E without assuming that B~ is small [6]. 

The theory of discontinuities for elastic media has been developed in [1, 9, 10] for the case when • 
has the form of an expansion in powers of its arguments (the case when × < 0). Discontinuities have 
been investigated Jin [5] for arbitrary functions of • and tp (see also [1]). 

Here we will present some results which will be necessary later relating to the case when g~0* (Ba) = 
gl(B22 -B2)/2. As we carl conclude from [5], these results are independent of whether the first two terms 
in (1.9) can be represented in the form of expansion (1.10), but do rest considerably on the form of 
the function tp*(Bc,) assumed above. If we fix the values of B~, the states B + which satisfy the relations 
on the discontinuil~ (1.1), give a curve for all possible values of Win the plane B1B2, which it is natural 
to call the shock adiabat. The version that will be of most interest later is the one where the initial point 
A(Bi, B~) is fairly close to the origin of coordinates so that (B~I) 2 + (B~2) 2 < g/x. The shock adiabat in 
this case is shown in Fig. 1. 

The mapping of the shock adiabat in the velocity plane (or the "evolution diagram") is shown in 
Fig. 2. 

In Fig. 2 we have plotted the velocity of the discontinuity W along the horizontal axis, and we have 
shown on this axis the values of ci and c~ representing the characteristic velocities of system (1.1) in 
the state Bi, if2. The vertical axis in Fig. 2 serves only for comparing the velocity of the discontinuity 

+ + + + + + 
W and the characteristic velocities c I and c 2 in states B z, B 2. The values of c I and c 2 vary as a function 
of B~ and B~. Hence, the representation of these quantities and W along the vertical axis is conventional 
and just characterizes the fact that the inequalities between these three quantities are satisfied. The 
thick curves in Figs I and 2 denote the initially evolutionary sections of the shock adiabat (i.e. evolu- 
tionary on the assumption that there are no other relations apart from the initial ones on the discontinuity 
(1.1)). The entropy non-decreasing condition is satisfied for those parts of the shock adiabat which lie 
outside the circle with centre at the origin of coordinates passing through the pointA in Fig. 1. As can 
be seen from Fig. 1, this condition is satisfied for all the initially evolutionary discontinuities. 

In Figs 1 and 2 we represent by points the states B~, B~ which satisfy the relations on the discontinuity 
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for specified/77, B~2 for two different values of W = W1 and W = W2. The vertical dashed lines in 
Fig. 2 correspond to these values. The states B~B+2 corresponding to the value c7 < WI < c~ are shown 
by the points M1, M2, G1 and G2 in Fig. 2. The discontinuities A ~ M1,A ~ M2 are slow evolutionary 
discontinuities. The discontinuities A ~ Ga, A ~ G2 are initially non-evolution discontinuities. The 
arrangement of the points Mx, M2, G1 and G2 in the B1B2 plane is shown in Fig. 1. In exactly the same 
way the points R1, R2, N1 and N2 correspond to the states B+IB~ when W = W2 > c~. The discontinuities 
A ~ RD A ~ R2 are fast evolutionary discontinuities, while the discontinuities A ~ N1, A ~ N2 are 
non-evolutionary discontinuities. The position of the points R1, R2, N1 and N2 in the B1B2 plane is shown 
in Fig. 1. 

An investigation of the structure of elastic shock waves using the equations of viscoelasticity showed 
[5, 10, 11], that evolutionary discontinuities and only such possess a structure which enables us to assume 
them to be "permissible" or physically realizable. 

2. THE S T R U C T U R E  OF E L E C T R O M A G N E T I C  SHOCK WAVES 

The change in the magnetization vector in magnetic materials will be described by the Landau- 
Lifshits equation [8] 

tMll t  = ~ M  x H,f) - ~.H,f (2.1) 

The vector Itefis the gradient of the function ~m(Bi, Mk) with respect to the variable Mk for constant 
Ba. In the approximations considered here, when I M I = M = const the gradient is taken on the surface 
of the sphere M~ + M22 + M 2 = M 2 and lies in the plane tangent to the sphere. The quantities 7 and 

are determined by the properties of the material, and ~/(yM) varies in different materials from 10 -2 
to 5 x 10 -5. The last term in the Landau-Lifshits equation is usually written in the form EM x (M x 

2 tlef)/M , which in the case considered is identical with the one written, since M • Fie/= 0. 
The Landau-Lifshits equation has been successfully used to describe fairly rapidly moving waves [6]. 

There is an experimental confirmation of the Landau-Lifshits attenuation in undeformed magnetic 
materials [8]. The behaviour of solitons in the isotropic case taking the effective dissipation into account 
has been investigated in [12], using these equations. A more complex system of equations was used to 
describe the motion of domain walls or slowly moving waves [7, 13]. Here the dependence of ~m on 
the derivatives of the magnetic field was also taken into account; this leads to the occurrence in Eqs 

2 (2.1) of terms with second derivatives 1 3/~/ar 2. As has already been stated, we must neglect these effects 
in order that the wavelength l, given by (2.1), should satisfy the condition l = cW/7Hef "> l, cm, where 
cW is the wave velocity. This condition will be assumed to be satisfied. 

We choose Ma as the curvilinear coordinates on the sphere I M I = M. Then, using (1.7), and projecting 
Eq. (2.1) onto the M1 and M 2 axes, we obtain 

IM, M 2 -M? (I.. ,  ] rI .°  

IM2 • (b~m'~ z. M 2 - M Z - M ~ (  IOta ] (2.3) 

Multiplying these equations by (t~mlIM1) B and (It~mlIM2) B respectively and adding we obtain 

~ 0  (2.4) 
IMp)= It M: - M~ t, IM1 )~ + M2 - MI2 !,,-~-~ ,)~ 

As follows from (2.2)-(2.3), inequality (2.4) becomes an equality only when IMillt = O, IM2/bt = O. 
We will consider the solution of the equations describing the behaviour of an electromagnetic field 

in the form of a travelling wave in which all the quantities depend on the variable ~ = Wt - x, and we 
will seek a solution of the problem of the structure of the electromagnetic shock wave. The value ~ = 
--oo corresponds to the state ahead of the discontinuity, while the value ~ = oo corresponds to the state 
behind the discontinuity, and W is the velocity of the wave in question. The solution is defined by 
differential equations (1.1) and Eqs (2.2) and (2.3) in which D/tt must be replaced by Wd/d~ and I///r 
must be replaced by-d/d~. Equations (1.1) can then be integrated and, taking into account the equation 
Ba = Ha + Ma and the conditions for ~ = --~, give 
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4 (2.5) 

where B, and M-- are the values of B, and M, when 5 = -00. This enables us to introduce the function 

@‘,(M M )=_(4+~)2+w+4)2 I* 2 
2(1- W2) 

- B3dm+g(p(Mp) 

Pa =M;-(l-W2)B,-=M- l- a( +) 

(2.6) 

which is independe:nt of the instantaneous values of Br and B2 such that, taking (2.5) into account, we 
have 

( 1 g&= aQ*(M,) 
a4l B 

k 
a4 

(2.7) 

Equations (2.7) enable us to represent the equations describing the structure of the electromagnetic 
shock wave and rel.ation (2.4) in the form 

w d4. hM2-M;-M;&D* a@* -=- 
65 M2-M; aM, 

--YM~K 
2 

w dM2 a@* 
-=YM3aM- 65 

AM2-Mf-M;&D' 

I M2-M; aM2 

(2.8) 

(2.9) 

(2.10) 

States with 5 = it- can only correspond to singular points of system (2.8), (2.9) since the derivatives 
of M, with respect to 5, by (2.5), are proportional to the derivatives of B, and all the derivatives in the 
solution of the problem of the structure of the shock wave must vanish as 5 + 200. 

The singular points of system (2.8), (2.9) coincide with the critical points of the function (P*(Mi, M2), 
in which the partial derivatives of this function are zero. By virtue of Eqs (2.7), at these points the 
derivative &I+,@~, BB)/aM, = 0 vanish, which, by (1.6) denotes that the singular points of system (2.8), 
(2.9) correspond to equilibrium states. 

Note that if we eliminate the electric field from the relations on the discontinuity (1.1) then, using 
the equation Mi = Bi -II, we can write it in the form 

B,+=B;+L l_w2(Ma+-M,-) (2.11) 

Equations (2.11) differ from (2.5) solely in the presence of the superscript + on B, and MW If we make 
the variables M, correspond to B,, as given by (2.5), the transfer from one singular point of system 
(2.8) (2.9) to another ensures that the relations on electromagnetic shock waves with thermodynamically 
equilibrium states in front of and behind the discontinuity are satisfied. 

Relations (2.11) show that. the mutual arrangement of the singular points of system (2.8) (2.9) in 
the Mi, I& plane differs only in scale from the mutual arrangement of the points in the B1, B2 plane, 
characterizing possible states in front of and behind the discontinuity for a specified value of W. This 
enables us to use the results from Section 1 to determine the mutual arrangement of the singular points. 

By inequality (2.10) all the integral cmves of Eqs (2.8) and (2.9) in the Ml, A42 plane intersect the 
level lines of the function @*@Vi, M2) on the side on which this function decreases. Then the angle 
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that the integral curve makes with the level line will be smaller the smaller the ratio of 2, to ~/. When 2, 
= 0 the integral curves coincide with the level lines of the function O*(MI~ ). 

Note that when 2, = 0 (i.e. when there is no dissipation) the closed level lines of the function O*(M1, 
M2) = const which do not contain critical points correspond to solutions of Eqs (2.8) and (2.9) that are 
periodic in g, i.e. periodic undamped waves. The level lines entering both ends at a singular point 
correspond to solitary waves. Particular forms of solitary waves were considered in [13] for the case 
when the direction of the magnetization vector coincides with the axis of easy magnetization when 
~ _- __.oo. 

The type of singular points of system (2.8), (2.9), by virtue of relation (2.10), is related in an obvious 
way to the type of corresponding critical points of the function ~*(Ma). If O*(Ma) has a maximum, 
then by virtue of (2.10) the whole neighbourhood of this point is filled with integral curves which depart 
from it as ~ increases. Consequently, the singular point is a node or a focus. For sufficiently small L/TM 
(it is this case that we are considering) the singular point is a focus. If ~*(Ma) has a minimum, then 
for small ~'tM the singular point is a focus with entering integral curves. In a similar way one can easily 
obtain that a saddle corresponds to a saddle. 

When the parameters on which the function ~* depends change (in the case considered, when W 
changes) the type of critical point in general may not change so long as this point is isolated. Changes 
may occur when critical points merge. One of the principal coefficients of the quadratic form, 
representing the function ~* in the neighbourhood of each of the critical points, vanishes when they 
merge, but has different signs at the critical points before merging occurs, whereas (in the general situ- 
ation) the second coefficient remains non-zero and of the same sign at both points. This denotes that 
one of the merging points is a saddle while the second is a node. After merging the points may banish 
and may change places. 

When the critical points merge the intensity of the corresponding discontinuity approaches zero, and 
at the instant when merging occurs the velocity of the discontinuity W is equal to the characteristic 
velocity, calculated for the state corresponding to this point. A change in the type of the initial point 
A with specified coordinates M~I, M~2 occurs when, if the point A merges with another singular point, 
the velocity of the wave W passes through one of the values of the characteristic velocity at the point 
A. Critical points disappear after merging, for example, at the point H (Fig. 2) when Wincreases. Then 
the velocity Wis equal to the characteristic velocity behind the discontinuity. For values of W sufficiently 
close to unity, and for fixed values of M~I and M~2, such that (M~I) 2 + (MS) 2 < M 2, it can be seen from 
(2.6) that the initial point A is a maximum for the function O*(M1, M2). 

Hence, and from the previous discussions, it follows that in the M1, M2 plane (Fig. 1) for all W > c~ 
the pointA is a maximum of the function O*(M1, M2) (an unstable focus for system (2.8), (2.9)), the 
points R1 and R2 are saddles (and are also saddles for system (2.8), (2.9)), while the points N1 and N2 
are minima of the function ~*(M1, M2) (stable foci for the system of differential equations). When 
ci < W < c~, the point A is a saddle for the function O*(M1, 3/2) (and for system (2.8), (2.9)), the 
point G1 is a saddle for ~*(M1, M2) (and a saddle for the system), and the point G2 is a maximum 
for O*(M1, M2) (an unstable focus for the system). This enables us to represent the level lines of the 
function O*(M1, M2) and the integral curves of system (2.8), (2.9) qualitatively. 

We will first consider the case when W > c~. The position of the singular points (compare with 
Fig. 1) and the level lines of the function O*(M1, M2) are shown in Fig. 3. The qualitative investigation 
of the level lines is confirmed by a numerical calculation, one of the results of which is shown in 
Fig. 3. 

It can be seen from Fig. 3 that there is always an integral curve from point A to point R1. In other 
words, all the discontinuities corresponding to the branches of the shock adiabat which go from the 
upper point A to the right in Fig. 2 and to the right upwards in Fig. 1 are permissible. 

The integral curves which go from point A to point R2 accumulate in a narrow strip whose width is 
smaller the smaller the value of L/TM (L/),M is of the order of magnitude of the angle which the integral 
curve makes with the level lines of the of the function O*(M1, M2)) and the smaller the length of the 
loop of the level line which passes through the point R1 and surrounds the point A. This strip, shown 
hatched in Fig. 3, almost follows the level lines of the of function O*(M1, M2) for small L/~,M, advancing 
very slightly in the direction of which ~* decreases as g increases and describes something like a spiral. 
There are integral curves between the coils of this spiral which fall within the region considered through 
the second external loop of the level line passing through the point R1. The ratio of the width of the 
strip to the distance between neighbouring strips is of the same order of magnitude as the ratio of the 
lengths of the loops which compromise the level line, passing through the point R 1. The strip emerging 
from point A may end at one of the points N1 orN2, where the function ~*(M1, 3/2) has a minimum. 
It may also divide, and part of the integral curves will end at N1 and part at N2. Here one of the integral 
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Fig. 3. 

Y 

curves arrives at the point Rz. In the latter case an evolutionary shock waveA ---> R 2 will be permissible. 
When the parameters characterizing the shock waves change, and in particular when Wchanges, the 

level lines of the function ~*(M1, M2) will change and therefore the possibilities described above of 
the integral curves emerging from the pointA terminating will alternate. For small Z/TM a small change 
in the level lines due to a change in Wis sufficient for the strip consisting of the integral curves emerging 
from the point A to make several excessive rotations. If the width of the strip is less than the distance 
between the strips then, for a change in W, the pointA will be connected to the point R2 and then not 
connected. The change in W required for this will be smaller the smaller the value of L/yM. 

Hence, the set of permissible discontinuities in the section of the shock adiabat K'H (Figs 1 and 2) 
recalls the dashed line where the length of the dash is shorter the smaller the value of L/(TM ). As regards 
the ratio of the width of the strip to the distance between neighbouring strips, it seems to be always 
less than unity and is small when the points A and R1 are close to one another, i.e. when the velocity 
Wis close to c-2. The shock wavesA --> N1 andA ---> N2 are non-evolutionary due to the fact that there 
are more boundary conditions on the discontinuity (1.1) than necessary for their evolutionarity. 
Consequently, these shock-waves are of no interest as they have a tendency to decay when they interact 
with small perturb~ttions. 

We will now consider the case when c~ < W < c~, assuming initially that the difference c~ - W is 
small. Then the pattern of level lines and integral curves shown in Fig. 3 does not change qualitatively 
with the exception of a change in the name of the singular points (see Fig. 4). 

The initial point A is now a saddle. The separatrices which emerge from this point when g increases 
are shown by the dashed lines in Fig. 4. These separatrices may terminate at the points MI and M2 as 

,r.A, z 

Fig. 4. 
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-o.z o 

j-~z, 

Fig. 5. 

---> o, and may represent the structure of slow evolutionary shock waves. But for a certain special 
combination of parameters (which must be regarded as an additional relation on the discontinuity) the 
separatrices may terminate at the point G1, representing the structure of the shock waveA ---> G1 (which, 
without this additional relation, would be non-evolutionary). If we assume that Bi  and B~2 are constants 
and vary IV, then, like the previous case, the versions of the termination of the integral curves emerging 
from the pointA will be changed more often the smaller the value of L/TM. 

It can be seen from Fig. 4 that the integral curves emerging from the point A, bound a strip composed 
of the integral curves emerging from the point G 2. If the width of this strip is less than the distance 
between the strips (which seems to be always true), when Wchanges there will be intervals when both 
integral curves emerging from the pointA terminate at one of the singular points M1 or M2. This denotes 
that there is no structUre' in one of the shock waves. On the sections of the shock adiabat AF '  and L D ,  
corresponding to slow shock waves, a set of permissible discontinuities is represented in this case by 
the dashed lines (the dashes are arranged so that for all W at least one of the slow shock waves has a 
structure). Discontinuities of the type A -o  G1, which are only evolutionary by virtue of the above- 
mentioned specification of the velocity, which is an additional relation on the discontinuity, correspond 
to the velocities which correspond to the ends of the dashes. 

If c] < W < c~, but the value of W is close to c], the pattern of level lines has the form shown in 
Fig. 5 (when Wchanges from c~ to ci a rearrangement of the level lines occurs; for brevity, intermediate 
versions will not be considered). In this case a structure of both slow evolutionary shock waves 
A ~ M 1 , A  ~ M2 and none others always exists. Hence, the sections of the shock adiabat corresponding 
to the slow shock waves for W close to ci,  belong as a whole to the set of permissible discontinuities. 

When W < c~ there are no permissible discontinuities since the initial point A is a stable focus. 
In conclusion we note that such an intricately constructed shock adiabat gives rise to problems related 

to the structure of the solutions of the initial boundary-value problems. In addition, the possibility arises 
of considerably influencing the strucatre of the solution by means of a small change in the parameters 
(for example, an externally applied magnetic field), which occur in the formulation of the problem. From 
the point of view of the theory of differential equations, the problem considered is one more example 
of the fact that hyperbolic systems of equations often cannot be used to find the solutions as a whole, 
since the set of permissible discontinuities is not defined by hyperbolic systems. We note also that the 
set of permissible discontinuities and the solution of the problem of the structure are qualitatively the 
same here as in [14], where a simpler example of a partial differential equation without specific physical 
applications was considered. 
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